

Bremen June 18,2009

TOC 2009 Europe

"Trends in equipment automation and control" Hans Cederqvist ABB Crane Systems

Content

1. Automation status

2. Project execution experience

- 3. Technology trends
- 4. Down-turn & vision
- 5. Summary & conclusions

Crane automation - status

- ECT, Rotterdam (137 ASCs)
- PSA, Singapore (35 OHBCs)
- HHLA/CTA, Hamburg (52 ASCs)
- Evergreen, Kaohsiung (6 auto CRMGs)
- APMT, Virginia (30 ASCs)
- Euromax, Rotterdam (12 QC +58 ASCs)
- Antwerp Gateway (14 ASCs)
- Hanjin/Busan (12 QC + 42 auto CRMGs)
- PNC/Busan (7 QC + 31 auto CRMGs)
- TPCT/Taipei (20 auto CRMGs)
- Patricks/Brisbane (23 auto strads)

Together >500 automatic cranes

In operation sofar this year

CTA, Hamburg - overview

EUROMAX, Rotterdam – Yard Area From Waterside

EUROMAX, Rotterdam – First commercial vessel

Hanjin, Busan – Overview quay and yard operations

Hanjin, Busan – stacking precision

TPCT – Taipei New Port

Automation – looking forward

- On-going projects
 - Hanjin/Algeciras (32 ASCs)
 - YML/Kaohsiung (22 auto RMGs)
- A large number of projects underway in all parts of the world – London, Barcelona, Busan...
- Gate automation using OCR
- RFID confirming vehicles
- QC automation supporting the operator

"All" green field projects today are implementing automation when checking/handling containers and vehicles

Content

1. Automation status

2. Project execution experience

- 3. Technology trends
- 4. Vision & Down -turn
- 5. Summary & conclusions

Delivery time for yard automation

Project	Suppliers	#	Months															Comment										
Kaohsiung	ABB/Chin-Pan	6												14														Chassis
PNC,Busan	ABB/ZPMC	31																19										Chassis
CTA/Hamburg	ABB/Kunz	22																		22								AGVs
Hanjin,Busan	ABB/ZPMC	42																			23							Chassis
Taipei	ABB/ZPMC	40																				2	ô					Chassis
Virginia	other	30																							30			ShCs
Rotterdam	ABB/ZPMC	58																									3	5 AGVs,TOS

Automatic stacking can be introduced fast! Number of cranes, number of systems to be integrated and new systems are influential factors.

Content

- 1. Automation status
- 2. Project execution experience

3. Technology trends

- 4. Vision & down-turn
- 5. Summary & conclusions

Technology trends - ASCs

• From crane to the provision of a functioning block with interfaces

Technology trends – interfacing vehicles

Decoupling horizontal transports

Technology trends - TOS

- more suppliers
- more flexible interface TOS/crane

Content

- 1. Automation status
- 2. Project execution experience
- 3. Technology trends
- 4. Vision & down turn
- 5. Summary & conclusions

Down – turn

Think long term...!

Vision

Some time in the (near) future ships will be unloaded/loaded with handling speeds approaching the technical capacity of the quay cranes – supported by electrically driven vehicles and ASCs!

But how to get there?

- **1.** Automate the quay crane
- 2. Introduce automatic twist-locks
- 3. Remove lashing operations
- 4. Move in steps..
- 5. Verify progress

STS Automation building blocks (ACLAS)

- Ship Profiling System (SPS)
 - Generates a height profile of a vessel.
 - Provides the optimum safe path for the ELC.
- Electronic Load Control (ELC)
 - Sway and position control
 - Automated travel cycles between any selected positions on vessel and quay following an optimal safe path and accurate positioning
- Chassis/Straddle Carrier Alignment System (CAS/SCAS)
 - Guides the vehicle driver to stop in position aligned with crane
- Skew Control
 - Controls the skew pendulum during the whole cycle.
 - If used with a CAS, the skew angle of the container will be adjusted to align with the skew of the chassis.
- Automatic landing system
- Automated twist-locks and removal of same

Remote operations - Key Benefits

- Faster shorter ramps, higher speeds
- Better ergonomics
- Less noise for the driver
- Improved visibility
- Faster change of drivers

Higher productivity and safer operations

Productivity test – one ship bay

Optimizing the benefits of crane automation

Your robot cells!

Optimizing the benefits of crane automation

Each crane robot cell shall include:

- Access control and safety functions
- Vehicle detection
- Vehicle positioning
- Vehicle identification
- Remote control
- Centralized maintenance/operations control and analysis
- Optimum sequencing of cranes in same block
- Logistic interface

Summary & Conclusion

- Think long-term!
 - 10 000+ TEU ships the standard
 - Ability to handle these with high productivity and low operational cost will be crucial
- Yard automation is today a proven technology quay crane will soon be there
- The investment in automation will in many cases be only marginally higher compared to manually operated alternatives due to savings in civil works and reduced number of cranes - > short Rol
- Optimize the design build upon the automation experience!

Power and productivity for a better world[™]

